Exercise 21

Find the projection of $\mathbf{v}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$ onto $\mathbf{u}=-\mathbf{i}+\mathbf{j}+\mathbf{k}$.

Solution

The dot product of \mathbf{v} and $\hat{\mathbf{u}}$ represents the component of \mathbf{v} in the direction of \mathbf{u}.

$$
\begin{aligned}
\mathbf{v} \cdot \hat{\mathbf{u}} & =\mathbf{v} \cdot \frac{\mathbf{u}}{\|\mathbf{u}\|} \\
& =\frac{(2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j}+\mathbf{k})}{\sqrt{(-1)^{2}+1^{2}+1^{2}}} \\
& =\frac{(2)(-1)+(1)(1)+(-3)(1)}{\sqrt{3}} \\
& =-\frac{4}{\sqrt{3}}
\end{aligned}
$$

Multiply this result by a unit vector in the direction of \mathbf{u} to obtain the desired projection.

$$
\begin{aligned}
(\mathbf{v} \cdot \hat{\mathbf{u}}) \hat{\mathbf{u}} & =(\mathbf{v} \cdot \hat{\mathbf{u}}) \frac{\mathbf{u}}{\|\mathbf{u}\|} \\
& =\left(-\frac{4}{\sqrt{3}}\right) \frac{-\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{(-1)^{2}+(1)^{2}+(1)^{2}}} \\
& =\left(-\frac{4}{\sqrt{3}}\right) \frac{-\mathbf{i}+\mathbf{j}+\mathbf{k}}{\sqrt{3}} \\
& =-\frac{4}{3}(-\mathbf{i}+\mathbf{j}+\mathbf{k})
\end{aligned}
$$

